UIL SCIENCE CONCEPTS BIOLOGY

Written by
Kenneth Davis

UIL Science Practice Packet author, Kenneth Davis, earned his B.S. from Texas A&M University and an M.S. in microbiology from The University of Texas Health Science Center. A science teacher for over 24 years, Davis is currently teaching Medical Microbiology at Austin Community College and Science at Harper High School. He has coached numerous UIL Science teams, winning District and Regional championships, as well as achieving success at the State level.

We are a small company that listens! If you have any questions or if there is an area that you would like fully explored, let us hear from you. We hope you enjoy this product and stay in contact with us throughout your academic journey.

~ President Hexco Inc., Linda Tarrant

HEXCO ACADEMIC

www.hexco.com
P.O. Box 199 · Hunt, Texas 78024
Phone: 800.391.2891 · Fax: 830.367.3824
Email: hexco@hexco.com

Copyright © 2006 by Hexco Academic. All rights reserved. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 *United States Copyright Act* without the permission of the copyright owner is unlawful. The purchaser of this product is responsible for adhering to this law which prohibits the sharing or reselling of copyrighted material with anyone. This precludes sharing with coaches or students from other schools via mail, fax, email, or simply "passing along." Hexco materials may not be posted online. Exception/permission for photocopies granted by Hexco Academic is only applicable for *Practice Packets* which may be copied expressly for the purchaser's group or classroom at the same physical location.

IF YOU LIKE THIS PRODUCT, WE ALSO RECOMMEND

Science Tests • Science Practice Packets

Science Concepts ● Science eMentors ● Science Flip Cards ● Science Workbooks

Coaching Strategies for UIL Science Success

There are a number of things that you can do as a student or a Science UIL coach to improve your success at any level of the competition. Here are a few of the things that done successfully in the past with students.

- 1. If you can, **establish a time in the beginning of the year to meet** individually and as a team for practice. This ensures that you get into a good habit early and get your students off to a quick start.
- 2. If you don't have a feel for the knowledge base of your students, give them a **practice test** from past years. I would recommend an Invitational or District test as you don't want to scare off your freshmen.
- Nothing can substitute for a student taking physics, chemistry, biology or advanced forms of these. A student can study prep materials, but discussion between student and well-qualified instructor is invaluable.
- 4. Remember that the UIL science contest is not just for juniors and seniors. Many coaches make the mistake of not **cultivating the younger students**, (freshmen and sophomores), and are faced at the beginning of the year with trying to fill the void left by the graduating seniors. Encourage the underclassmen to try out. Take them to invitationals where they can compete with other 9th and 10th graders in the area. They will see that they can be successful.
- 5. In the UIL science contest, a student that is a whiz in only biology, chemistry, or physics is a great asset. Remember, you can advance as high individual in each of the three subsections on the test, not just as one of the high individuals or the high team.
- 6. Break down the materials into **workable sections**, and set a calendar for studying these sections. For example, have them study photosynthesis or solution chemistry one week then go back at the end of the allotted time and discuss this as a group.
- 7. Be involved. Don't just give students old tests, and let them go. These students have many activities other than your science team, and need guidance. If they see you are dedicated and excited, they will be as well.
- 8. I always remind my students of the **scoring**: +6 for correct, -2 for incorrect, 0 for blank. Guessing is not encouraged by this grading setup. If they guess and do well, take them to Las Vegas when they are 21 and you can retire, otherwise refrain from flipping a coin in the testing session.
- 9. Encourage them to go through an entire test. You never know if there will be that one physics question that they remember your discussing, and they can answer it without even turning on their calculator!
- 10. Many of my students tear off the first page of the test so that they have the **formula sheet** with constants and the periodic table easily accessible. Use units in a problem to help solve problems and remember formulas.
- 11. Remind them it is cool to be a science nerd and that many of those students that give them a hard time about it will someday call them BOSS!
- 12. Memorization has its place, but the successful students can **think through problems**. Many of the problems at the Regional and State level involve a combination of several equations in order to solve.
- 13. Graphing calculators are fine, but we have found a simple scientific calculator does just as well on the test. Make sure your students are comfortable and practice with the same calculator they will use during the competition. We also send our students in with a spare calculator in case of a technical malfunction.

Have fun and good luck in your science endeavors!

Table of Contents

Biology Basics and Biochemistry	6
Metric Measure	6
The Basics	6
Periodic Table	6
Structure of Matter	6
Atoms and Bonding	7
Water, The Miracle Molecule	7
pH and Living Systems	8
Carbon Chemistry and Life	8
Macromolecules	8
Carbohydrates	9
Lipids	9
Proteins	9
Levels of Protein Structure	10
Nucleic Acids	10
The Cell	11
Development of Cellular Biology	11
The Cell	11
Cell Organelles	11
Cell Membranes	11
Movement across cell membranes	12
Cell Communication	12
Metabolism	13
Energy, Organisms, and Energy Transformations	13
Introduction to Metabolism	13
Enzymes and Enzymatic Reactions	13
Enzyme Inhibition	13
Cells Harvesting Energy/Oxidation of Glucose to CO ₂	14
Glycolysis	14
Krebs Cycle	14
Electron Transport Chain (ETC)	15
Fermentation	15
Metabolism Summary	15
Photosynthesis Overview	16
Chloroplast and Terminology	16
Light Reaction/ Electron Transport Chain	16
Dark Reaction of Photosynthesis	
Cell Division/Reproduction	
Cell Division in Bacteria	17
Cell Division in Eukaryotes	
Mitosis Phases/ Cytokinesis	17

UIL Science - Biology Concepts

of Science – Biology Concepts	
Hereditary Basics	
Human Cells and Inheritance	
Meiosis in Humans	
Comparing Mitosis and Meiosis	
Mitosis	
Meiosis	
Genetic Variation: Factors That May Increase Variation	20
Mendelian Genetics	20
Genetics Laws	
Punnett Squares	
Two Factor Crosses Using Punnett Squares	21
Genetic Disorders	21
Recessive Genetic Disorders	21
Dominant Genetic Disorders	21
Testing for Genetic Defects	21
Sex-Linked Traits	21
Errors in Chromosome Inheritance	22
DNA/RNA Technology	23
DNA-Molecular Inheritance	23
Pioneer Work on DNA Structure and Function	23
DNA Replication	23
Transcription	24
Translation	24
Mutations in Protein Synthesis	24
Differences in Protein Synthesis: Eukaryotes vs. Prokaryotes	25
Biotechnology/ DNA Technology	25
Recombinant DNA Products	25
DNA Technology	25
Descent With Modification: Darwin's Ideas	27
Evolution	27
Evolution Evidence	27
Population Genetics	
Factors that Influence Population Evolution	27
Maintenance of Species	28
Fossil Record	28
Organizing Living Things	29
Taxonomy and Phylogeny	29
Systematics: How We Group and Classify	29
Domain Classification System	29
Prions and Viruses: The Nonliving	29
Prions: The Nonliving, Infectious Proteins	29
Viruses: The Nonliving, Intracellular Parasites	30
Prokaryotes	31
Bacteria and Archaeabacteria	31
Microbial Nutrition and Oxygen Requirements	31
Disease Dynamics	31

UIL Science – Biology Concepts

Protists	33
Diplomonads and Euglenozoan Clades of Protists	33
Alveolate Clade of Protists	33
Stramenopile Clade of Protists	34
Amoebozoan Clade of Protists	34
Red Algae and Green Algae: Between Protists & Plants	35
Plant Kingdom	35
Alternation of Generations	35
Plant Adaptations for Terrestrial Life	35
Bryophytes	36
Seedless Vascular Plants	36
Vascular Seed Plants	36
Monocot vs. Dicot	37
Plant Tissues and Specific Cells/Tissues	37
Plant Stem Physiology	
Specialized Stems	
Plant Leaf Physiology	38
Plant Flower Physiology	38
Roots	
Plant Hormones	
Fungi	39
Characteristics of Fungi: Nutrition	
Major Groups of Fungi	
Fungi Groups	
Symbiosis in Fungi	
Pathogenic Fungi Types	
Animal Kingdom	
Animal Kingdom Generalities	
Phylum <i>Porifera</i> : The Sponges	
Interesting Sponge Facts	
Phylum Coelentrata, the Cnidarians	
Phylum <i>Platyhelminthes</i> , the Flatworms	
Phylum <i>Nematoda</i> , the Roundworms	
Phylum <i>Annelida</i> , the Segmented worm	
Phylum <i>Mollusca</i> , the Mollusks	
Phylum <i>Arthropoda</i> , the Arthropods	
Chelicerate Subgroup	
Uniramia Subgroup	
Crustacean Subgroup	
Phylum Echinodermata	
Phylum Chordata	
Subphylum Vertebrata	44

UIL Science – Biology Concepts

Human Physiology	46
Structural Organization in the Human Body	46
Body System Summary	46
Digestive System	46
Respiratory System	47
Circulatory System	47
Immune System: Innate Immunity	48
Immune System: Acquired Immunity	49
Lymphatic System and Lymphocyte Defense	50
Endocrine System	50
Excretory System	
Reproductive System: Male	51
Reproductive System: Female	51
Sperm and Egg Production	51
Embryonic Development in Humans	51
Nervous System	52
Muscular System in Humans	54
Skeletal System	54
Integumentary System: Skin, Hair, and Nails	55
Sensory Organs	55
Ecology	56
Aquatic Biomes	56
Terrestrial Biomes	56
Population Ecology	57
Factors That Affect Population Growth	
Organism Relationships	57
Food Chains, Food Webs, and Trophic Levels	
Feelogical Succession	

The Cell

Development of Cellular Biology

- Leeuwenhoek: responsible for microscope; allowed for study of microbial world
- Hooke: named the cell
- Schwann & Schleiden: developers of Cell Theory

The Cell

- Building block of life
- All have plasma membrane or cell membrane made up of phospholipid bilayer
- **Prokaryote**: single cell, no nucleus
- Eukaryote: larger, contains nucleus
- Cells about 70% water; Protein makes up majority of dry weight of cell

Cell Organelles

- Nucleus: contains all genetic information
- Ribosomes: site of protein synthesis, can be free or attached
- Lysosomes: secrete enzyme lysozyme, breaks down waste products
- Cell wall: structure and support in plants and bacteria
- Vacuoles: membrane-bound storage structures
- Chloroplasts: plastid found in plants where sun's energy is converted to chemical energy
- Golgi Complex: modifies and "packages" proteins
- Endoplasmic reticulum: transports proteins and can chemically modify proteins
- Cilia/Flagella: external structures facilitate movement
- Mitochondria: location of ATP synthesis
 - Mitochondria have their own DNA and can reproduce on their own; you inherit the DNA in the mitochondria from their mother: has inner layer and outer layer; about the size of a bacteria
- Microtubules: make up cytoskeleton of cell; help move organelles within cell
- Centrioles: in animal cells made of microtubules
- Peroxisomes: contain peroxides to degrade recycled organelles

Cell Membranes

- Regulate movement, protect, are selectively permeable
- Consist of phospholipid bilayer with integral and transmembrane protein channels
- Membranes are dynamic; referred to as fluid mosaic model
- Protein channels that pass through membrane are known as porins.
- Water moves through porins known as aquaporins.
- Contains glycoproteins and glycolipids that help other cells to recognize it